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THEOFGTICAL EVALUATION OF THE PRESSURES, FORCES, AND 

MOMENTS AT HYPERSONIC SPEEDS ACTING ON ARBITRARY 

BODIES OF REVOLUTION UNDEXGOING SEPARATE AND 

COMBINED ANGU-OF-ATTACK 

AND PITCHING MOTIONS 

By Kenneth Mazgolis 

SUMMARY 

Equations based on Newtonian impact theory have been derived and a 
computational procedure developed with the  a i d  of several  design-type 
charts  which enable the determination of the aerodynamic forces and 
moments act ing on a rb i t r a ry  bodies of revolution undergoing e i the r  sepa- 
r a t e  or  conibined angle-of-attack and pitching motions. Bodies with 
ax ia l ly  increasing and decreasing cross-sectional area d is t r ibu t ions  a re  
considered; nose shapes may be sharp, blunt,  o r  f l a t  faced. The analysis  
considers var ia t ions i n  angle of attack from -90' t o  90' and allows f o r  
both posi t ive and negative pitching ra tes  of a rb i t r a ry  magnitude. 
r e s u l t s  a r e  a l so  d i r ec t ly  applicable to  bodies i n  e i the r  separate or 
combined s ides l ip  and yawing maneuvers. 

The 

INTRODUCTION 

The purpose of the present paper i s  t o  develop a method based p r i -  
marily on Newtonian impact theory for calculat ing the  aerodynamic forces  
a t  hypersonic speeds act ing on a rb i t ra ry  bodies of revolution undergoing 
e i the r  separate or combined angle-of-attack and pitching motions. 
with ax ia l ly  decreasing as well as axial ly  increasing cross-sectional 
area d is t r ibu t ions  a re  considered i n  the analysis .  
sharp, blunt,  o r  f l a t  faced, and forebody shielding e f fec ts  on f l a r ed  
aft  regions a re  taken in to  account. The angle-of-attack range considered 
i s  and pitching veloci t ies ,  both posi t ive and negative, 
of a r b i t r a r y  magnitude a re  allowed. Thus, the formulation of the problem 
i s  broad i n  scope and allows f o r  general application of the r e s u l t s  
obtained t o  missiles and a i r c r a f t  configurations of current i n t e r e s t  f o r  
a wide range of f l i g h t  conditions. 

Bodies 

Nose shapes may be 

-90' 5 a 5 90° 
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Equations are derived and a computational procedure developed w i t h  
the  use of several  design-type charts  which permit t h e  calculat ion of 
t he  normal and a x i a l  forces  and pi tching moment f o r  any desired body. 
Some consideration i s  a l so  given the problem of modifying the  r e s u l t s  
obtained t o  account f o r  the e f f e c t s  of Mach number var ia t ion  and d i f f e r -  
ences in  the r a t i o  of spec i f ic  heats.  

Although the  pitching motion referred t o  herein i s  a steady-state 
e f fec t ,  it i s  known tha t  the impact theory when applied t o  uniformly 
accelerated motion, that is, e f f ec t ,  p red ic t s  a zero resu l t ing  force 
and moment. Therefore, the analysis  and r e s u l t s  of the present inves t i -  
gation can be considered t o  include the unsteady pitching condition f o r  
low-frequency osc i l la t ions .  Because of symmetry considerations, t he  
r e su l t s  are a l so  d i r e c t l y  applicable to a rb i t r a ry  bodies of revolution 
undergoing e i the r  separate o r  combined s ides l ip  and yawing motions, and 
low-frequency lateral  osc i l la t ions .  

6, 

cyl indr ica l  coordinates (see sketch (a)) 

rectangular coordinates ( see sketch (d)  ) 

body radius  i n  r,w plane (sees sketch ( a ) )  

m x )  ax ia l  rate of change of body radius,  - 
dx 

body radius at  nose 

radius of cy l indr ica l  sect ion (see sketch ( b ) )  

Mach number 

r a t i o  of spec i f ic  heats  

l oca l  pressure 

f ree-  stream pressure 

free-stream veloci ty  

free-stream densi ty  

. 
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P - P, coefficient of pressure difference, 
pmL 1 2  

angle of attack 

angular pitching velocity ( see sketch (a) ) 

local normal component of resultant velocity 

reference area used for nondimensionalizing purposes 

reference length used for nondimensionalizing purposes 

body length 

Normal force normal-force coefficient, 

Lift 
1 2  2~0,Vm Sr 

lift coefficient, 

Axial force 

2pmVm Sr 
axial-force coefficient, 

1 2  

Drag 
drag coefficient, 

2 1 2  pmVm Sr 

pitching-moment coefficient, Pitching moment 

L p v  2SrZr 
2 m m  

location of pitch axis and moment reference, measured 
positively rearward from nose (see sketch (a)) 

function defined by equation (4) 

maximum percent shielding due to forebody, defined by 
equation (25) 

maximum cross-sectional periphery at a given axial station 
shielded by forebody (see sketch (c) ) 
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6 angle subtended by periphery s (see sketch ( e ) )  

% angle used f o r  evaluating forebody-shielding e f f ec t ,  
= ~(II  - e ) ,  (see sketch ( c ) )  

21722 used as integrat ion limits t o  denote portion of body 
length 2 

functions associated with evaluation of axial force 
(see eqs. (10) t o  (12) and (16) t o  (18)) 

a 

functions associated with evaluation of normal force and 
pi tching moment (see eqs. (13) t o  (15) and (16) t o  (18)) 

increments o r  decrements i n  previously defined quant i t ies  

parameter used i n  evaluating f la t - faced  nose contributions,  
cos a 
RO 

vca 
9 -  

.. 
i 

Supers c r i p  t : 

* denotes bas ic  contribution plus  forebody-shielding e f f ec t  
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Sub s c r  i p t  s : 

f denotes contribution of f la t - faced nose section 

t denotes t o t a l  contributions from a l l  sources 

S t a b i l i t y  derivatives are discussed i n  the  appendix and a re  defined 
therein.  

ANALYSIS 

The Newtonian impact theory i s  s t r i c t l y  applicable a t  Mach nunibers 
approaching i n f i n i t y  and for  values of 7 ,  t he  r a t i o  of spec i f i c  heats, 
approaching unity.  Studies of t h i s  approximate theory and simple modi- 
f i c a t i o n s  thereof ( f o r  example, re fs .  1 and 2 )  have shown the Newtonian 
concept t o  be a valuable t o o l  i n  predicting general trends and i n  many 
instances yielding quantitative r e su l t s  of acceptable accuracy when 
applied t o  high supersonic and hypersonic speeds. 

Basically, the theory assumes t h a t  the shock wave l i e s  on the body 
surface and t h a t  the flow, upon s t r iking t h e  body, loses  a l l  of i t s  
momentum i n  the direct ion normal t o  the body surface and continues along 
the surface with i t s  tangent ia l  component of momentum unchanged. Fur- 
thermore, only those surface areas under d i r e c t  impact from the air-  
stream, t h a t  is, surface areas which ''see'' the  flow, w i l l  experience a 
pressure force.  The Newtonian approximation does not predict  any e f f e c t  
on those surface areas facing away o r  "shielded" from the flow; i n  these 
regions the flow i s  assumed t o  be completely separated and the l o c a l  
pressure i s  equal t o  the free-stream pressure. 

The Newtonian hypothesis yields a l o c a l  pressure coeff ic ient  which 
may be expressed as (see r e f s .  2 and 3 )  

(27 P - P, 

2 
c P = - = 2 -  1 2  

- P,v, 

where p,, p,, and V, are the  free-stream density, pressure, and 
velocity,  respectively, and where p and VN a re  the l o c a l  pressure 
and l o c a l  normal component of resul tant  velocity,  respectively.  It i s  
t o  be  noted t h a t  equation (1) i s  applicable only t o  those surface areas 
t h a t  face the  flow; f o r  surface areas t h a t  are shielded from the flow, 
p = p, and Cp = 0. 



6 

Consider the  body of revolution defined w i t h  respect t o  the cyl indri-  
c a l  coordinate system shown i n  the following sketch. 

cO=z 
2 

r ,a=%- 

I u 

Sketch ( a )  t- xo-i 
The origin is  located a t  the apex or  i n  the  case of a body with a f l a t  
face, a t  the  intersect ion of the body axis  of symmetry (x-axis) and the 
face plane. 
x = x, 
nose-up as indicated. 

The axis of p i tch  and moment reference i s  located a t  
measured posi t ively rearward; posi t ive sense of ro ta t ion  i s  

The loca l  normal veloci ty  VN resu l t ing  from a combined angle-of- 
a t tack  and pitching motion -% 5 a 5 5; -m < q < 
face areas that a re  subject t o  compression flow, t h a t  i s ,  that "see" the 
flow has been derived ( r e f s .  3 and 4) and i s  expressible i n  the following 
form: 

applicable t o  sur- 
( 2 -  ,) 

.I 

r 

L 
1 
2 
2 
5 

where R(x) and R ' (x)  define the  body shape and i t s  r a t e  of change 
with axial  distance. 
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k. 

L 

L 

Substitution of equation (2) into equation (1) yields the local 
pressure coefficient 

r 

(x)cos2a - ~'(x)sin w sin 2a + sin 2 (I) sin 2 a 2 
1 + RI2(x) 

cp(w,x) = 

- 2 - 4 sin w cos a R'(x) + x - 
Vm 

xd + 2 - 9 sin 2 w sin u ~ ( x ) R ' ( x )  + x - 
Vm 

Considerable simplification is afforded by use of the substitution 

R'(x)cos a 

which enables equation ( 3 )  to be-rewritten as follows: 

cp(w,x) = ~~2(X)cos2a~2(x)sin% - 2G(x)sin (o + 13 
1 + RI2(x) 

or 

- G(x)sin d' m2( x) cosga 
cp(w,x) = 

1 + Rt2(x) 

(4) 

( 5 )  

where G(x)sin u) 5 1 for R'(x) 2 0 and where G(x)sin 0) 2 1 for 
R'(x) < 0. The conditions on G(x)sin w insure that the surface region 
under consideration is not shielded from the f l o w .  When the surface is 
shielded, i.e., G(x)sinu) > 1  for R'(x) > 0 or G(x)sinco < 1 for 
R'(x) < 0, %(u),x) is, of course, zero. An examination of equation (2) 
in conjunction with the substitution of equation (4) and the requirement 
that VN 2 0 readily yields the indicated inequalities. It should be 
noted that, for R'(x) = 0, the parameter G(x) is infinite and a more 
convenient expression for the pressure coefficient C,(cu,x) is directly 
obtainable from equation ( 3 ) .  
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When the body of revolution has a f l a t  c i r cu la r  face, t he  face 

x = 0, R ( x )  = r, 
pressure predicted by the Newtonian theory may be obtained from equa- 
t i o n  ( 5 )  by the following subst i tut ions therein: 

R ' (x )  --f 00, and 

i n  coefficient 

. The formula f o r  t h i s  pressure i s  given q r  G(x) = 

form by: 
v, cos u 

\ 3  

qr s i n  w )2 Cp,f  = 2 cos2a 
V, cos a 

Cp,f  = 2 cos2a qr s i n  w 
V, cos a L 

1 

(6) 

2 

5 

and i s  applicable t o  those regions t h a t  a r e  not shielded from t h e  flow, 

i .e . ,  r s i n  w s  . For shielded regions, i . e . ,  
V, cos a 2 

9 
V, cos a 

9 
r s i n  w > , Cp,f i s  zero. 

Another e f f e c t  t h a t  requires consideration i s  the shielding of 
f l a r e d  a f t  regions of the body due t o  the presence of the forebody. 
example, the la teral  surface area of a conical frustum would be corn- 
ple te ly  exposed t o  the flow at  a suf f ic ien t ly  s m a l l  u and f o r  q = 0 
i f  the frustum w a s  used as the forward section of a body; i f ,  however, 
the same frustum w a s  positioned as a f l a r e d  a f t  section behind a 
cylindrical  midsection, then pa r t  of the frustum would be shielded 
from the flow. A later section of t h e  paper t r e a t s  t he  problem of 
estimating corrections t o  the  calculated forces and moments so as t o  
account f o r  such shielding e f f e c t s .  

For 

. 

I n  t he  calculation of the a x i a l  force,  noma1 force, and pi tching 
moment f o r  an a rb i t ra ry  boay of revolution, there  are therefore three 
components t o  be considered: 
with the body, exclusive of forebody shielding e f f ec t s ;  ( b )  corrections 
necessitated by forebody shielding e f f ec t s ;  and ( c )  t he  contribution of 
a f la t - faced nose shape. 

(a )  the  basic  forces and moments associated 

The basic  forces and moments ( i t e m  ( a )  above) may be expressed i n  
the following manner : 

R(x)Cp(w,x)sin w dL0 dx 2 (7) 



i 

v 

where 2 is the overall body length, Sr and 21- are the reference 
area and reference length, respectively, used for nondimensionalizing 
purposes, and functions q ( x )  and %(x) are the w limits determined 
by the VN = 0 velocity boundary and the applicable range of o, i.e., 

- 5 < o 5 K. 
2 '  2 

factor of 2 accounts for the forces and moments acting on the complete 
body. 

Because of symmetry considerations, the multiplicative 

For body regions that are completely exposed to the flow, 
3.r 

ol(x) = - 2  and q(x) = for body regions where part of the lower 2' 
surface is shielded, ~ ( x )  = a rc  csc G(x) and uq = 3.r --; and for body 

regions where part of the upper surface is shielded, 

%(x) = arc csc G(x). Inasmuch as the calculations of CN, CX, and C, 
involve (see eqs. (7) to ( 9 ) )  integrations with respect to the variable 
o of the quantities Cp(o,x) and Cp(o,x) sin o, it is convenient to 
define the following functions of G(x) : 

q(x) = - 5  and 
2 

Cp(o, X 1 
m c  csc G(x) 

R'(x) 2 0: G(x) > 1 
R'(x) < 0: G(x) 
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J l E ( x f l  = J'I2 Cp(w,x)sin w d ~ u  
arc csc G(x) 

J 2 3 x f l  = J'I2 Cp(w,x)sin w du 
-'I2 

R ' ( x )  2 0: G(x) < 
X)  < 0: G(x) 2 1 

(R'(x) > 0: -1 5 G(x) 5 1) (14) 

R'(x) 2 0: 
R'(x) < 0: G(x) -1 

G(x) > 1 a r c  csc G(x) 
Cp(w,x)sin w d~ 

where the ranges of R'(x) and G(x) variations are indicated paren- 
thetically next to each integral. 

UFon integration, and designation of the various I and J functions 
as simply III"<xg and Jp(x)], the following formulas and relations 
result : 

< < 
For 0 = G(x) = 1 and R'(x) > 0 f 

secG  xi = nh2(x) + 23 1 + R'*(x) 
Rf2(x) 

I + R'2(x) set% JF(xfl = -231G(x) 
Rf2(x) 

J 

For G(x) > 1 and R'(x) > O  or for G(x) 5 -1 and R'(x) < 0, 

see% I I (  I T I\ 
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L 
1 
2 
2 

For G(x) < 0 and R'(x) > 0 or  fo r  G(x) 2 1 and R'(x)  < 0, 

It should be noted that, for R'(x) < 0 and -1 < G(x) < 1, the  
surface region i s  shielded from t h e  flow (Cp(u,x) = 0) and therefore 
both I[G(x] and J F ( x f l  are zero. For the  spec ia l  cases where 

the following formulas are applicable: 

G(x)+fm, a condition-which a r i s e s  when R'(x) = 0 and/or la1 = $3 

For G(x) + h and R'(x) = 0, 

For G ( x ) + b ,  

and R'(x) < 0, 

la I = $, and R ' ( x )  > 0 o r  f o r  G ( x ) + p ,  

Equations (7)  t o  ( 9 )  may be rewrit ten i n  terms of the I 
and J[G(xj] functions: 
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2 
Cx = 2 R ( x ) R ' ( x )  I[G(x)]& 

S r  

For any given body, therefore,  t he  integrands of equations (21) t o  

In  

f'unctions, computed from equations (16) t o  (18), are  pre- 

( 2 3 )  may readi ly  be computed f o r  various x-s ta t ions and a simple graphical 
o r  numerical integrat ion performed t o  y i e l d  t h e  forces  and moments. 
order t o  f a c i l i t a t e  such calculat ions,  design-type charts  f o r  t h e  I[G(x)l 

and J[G(xj] 
sented i n  f igures  1 and 2, respectively,  which are contained i n  a pocket 
attached t o  the  back cover of t h i s  report .  

I 

The second component t o  be considered i n  t h e  force and moment ca l -  
culations i s  ( i t e m  ( b ) )  t he  correction necessi ta ted by forebody shielding 
e f f ec t s  i f  applicable t o  the  given body f o r  t he  specif ied angle of a t t ack  
and pitching veloci ty .  I n  t h i s  connection, it should be noted t h a t  an 
exact correction would be a function of many var iables  and thus would 
not be usefu l  as a simple design-type procedure. It i s  a l so  f e l t  t h a t  
f o r  most bodies t h i s  pa r t i cu la r  e f f e c t  i s  not too  s igni f icant  ove ra l l  and 
thus a calculat ion t o  define the m a x i m u m  correct ion possible f o r  a simple 
shape would be more appropriate.  

# 

- 

Consider, then, a f l a r e d  af t  sect ion s i tua t ed  behind an i n f i n i t e  
c i rcu lar  cylinder of radius Rb shown i n  t h e  following sketch: 

I 

Sketch ( c )  
I Sketch ( b )  
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A t  an ax ia l  location x behind the cylinder, the maximum cross-sectional 
periphery shielded by the cylinder i s  s (see sketch ( c ) )  where 

s = 8R(x) = R(X)WC COS 

or by tr,igonometric substi tution, 

2 

s = a ( x ) a r c  cos 11 - (27) 
S The quantity expresses the maximum percent shielding t h a t  may 

2xR(x) 
be present due t o  the forebody. The following r e l a t ion  ex is t s :  

I h 

and it i s  readi ly  apparent t h a t  the maximum percent shielding ranges 

from 0 (& = .) t o  70 percent (5 = 1). The variat ion of the p a r a -  

e t e r  k with the r a t i o  

N x )  

- Rb i s  shown i n  figure 3 .  
R(x) 

The parameter k may i n  turn be re la ted  t o  the integration l i m i t  u+, 

100 k =  x 100 = 50 - - q 
2xR( x)  n 

where 

q, = a rc  s in /=  



Omitting calculation de ta i l s ,  the  procedure i s  t o  derive expressions L 

f o r  A I [ G ( x ) ]  and Nk(x)] through use of equations (lo), (12), (13), 
and (15) with appropriate changes i n  the w l h i t s  of integrat ion so as 
t o  account f o r  the shielding boundary u+,. Corresponding corrections t o  
the force and moment are  then introduced: 

2 22 

sr 1 
AC, = - -  R(x) AJ[G(x)]dx 

and 

I n  equations (29 )  t o  (3l), the  integrat ion i s  performed over t h a t  see- 
t i o n  of body length affected by the forebody, herein denoted from 

t o  22. The functions AI[G(x)] and N[.(x)] are  tabulated as 

follows : 

2 1  



For 0 6 G(x) 5 1 and o 5 ~ l g  5 E, 

1 + Rv2(x) 
Rv2(x) 

1 + R'*(x> 
Rt2(x) 

1 - ~G(X)COS % + fi - 2y, 

sec% AJ [G(x)] = -2 r(x) cos 4 2  + sin%) 
3 

For 1s G(x) < 00 and 0 .I: .I: a r c  csc G(x) 

+ R'2(x) sec% AI (x) + 2]arc sec-G(x) 
Rf2(x) 

+ 3iG2(x) - 1 - 4G(x)cos q, 

L 

- G(x)arc sec-G(x) 3 
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Y I  For -1 5 G(x) < 0 and -- 5 q, 5 0,  or -w  < G(x) < -1 and 

a rc  csc G(x) 5 u+, 5 0 ,  
2 -  

For any other conibinations of t he  parameters q, and G(x), t he  fore-  
body does not give r i s e  t o  any addi t ional  shielding and the  correction 

f ac to r s  are zero, t h a t  is ,  N[G(x)] = 0 and AJ G(x) = 0. The var ia-  

t i o n s  of AI[G(x)] 

i n  f igures  4 and 5 f o r  several  values of maximum percent shielding. 

[ I  
and aJ[G(x)] with the  parameter G(x) are  shown 

- - 

Included i n  these f igures  are the  bas ic  I[G(x)l and J[.(x)] curves 

t 

so that the  r e l a t i v e  importance of t he  corrections can be assessed. The 
corrections NN, aCx, and AC, may now be readi ly  obtained f o r  any 
given body i n  accordance with equations ( 2 9 )  t o  (31)  by using the ident i -  
c a l  procedure discussed previously f o r  calculat ing CN, Cx, and c,. 

Although the corrections AI@(xg and A J k ( x g  j u s t  discussed 
a re  d i r ec t ly  applicable t o  f l a r e d  a f t  sect ions s i tua ted  behind forebodies 
f o r  which 
value of R b  
regions characterized by 

R'(x) > = 0, a similar approach u t i l i z i n g  an average o r  modified 
could readi ly  be applied ( i f  required) t o  body shapes with 

R '  (x)  < 0. 

In  the event the  body of revolution considered has a f l a t  face, a 
The t h i r d  contribution (i tem ( c ) )  t o  the  force and moments i s  involved. 

incremental normal force w i l l ,  of course, be zero but  t he  axial-force 
and pitching-monient increments w i l l  be f i n i t e .  

The pressure act ing on the  f la t  face i s  given by equation ( 6 )  as 

2 
qr s i n  u) 

Vm cos a 
Cp,f = 



J 

* Consider t he  following sketch: 

f z  
I Shielded area 

VN = 0 boundary f o r  +q 
(v, cos a = qz) 

Sketch (d)  

If ,  f o r  convenience, the  parameter 
cos a 

quantity - , it i s  readi ly  seen 
RO 9 -  

L v, 
present f o r  values of 1.1 2 1 and 

s may be wri t ten:  

a i s  introduced t o  denote the  

that  no shielding e f f e c t s  w i l l  be 

the following in t eg ra l  expressions 

4c0sa1Ro~ 2 /RO2-z2 ( l - $ ) z d y d z  2 
%,f = 

Sr2r 'RO 

For values of 
changes i n  l i m i t s  are incorporated t o  account f o r  the  shielding boundary: 
f o r  q > 0, replace upper l imi t  on z by aRo, and f o r  q < 0, replace 
lower l i m i t  on z by Go. 

la1 < 1, the  equations above apply provided the  following 
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The indicated operations have been carr ied out and the  following 
closed-form formulas result: 

For 1.1 h 1, 

CN,f = 7 
2 2  KR, COS u + ha2 

a 

- 
CX,f - Sr 

KR, 3 2  COS u 1 
- 

Srzr  
Cm,f - - 

L 
(37) 1 

2 
2 
5 

Ro3cos% 15a axc cos- 1.1 - f i (2a4 a 

Srzr 15a2 

- 9a - 8)i- 
Cm,f  = 

The vmia t ions  of C X , ~  and &,f with the parameter a a re  
shown i n  f igure 6. It should be noted t h a t  only posi t ive values of 
need be considered since C X , f ( a )  = Cx,f(-a), and &,f(a)  = -Cm, f ( - a ) .  

a 

Thus the  three contributions t o  the  forces and moments have been 
considered: (a) the  basic components CN, Cx, &, (b) the forebody 
shielding components ACN, EX, hem, and ( c )  the f la t - face  contri-  
butions C N , ~ ,  CX,f, Cmlf .  These components a re  additive,  

%,t = cN + + CN,f 

C X , t  = cx + a x  + C X , f  

%,t = Cm + aC, + Cm,f  

( 3 9 )  



In  t h e  event the lift coefficient CL and drag coeff ic ient  CD 
are desired, they may readily be obtained by the formulas: 

CL = CN cos a - Cx s i n  a 

CD = CN s i n  CL + Cx cos a 

For values of a and q i n  the immediate v i c i n i t y  of zero, a con- 
venient form fo r  evaluating s t a b i l i t y  derivatives may be obtained from 
the  equations derived herein; they a re  presented f o r  general i n t e re s t  
i n  the appendix. 

APPLICATION OF METHOD 

I n  order t o  i l l u s t r a t e  t he  procedures used i n  evaluating the aero- 
dynamic forces and moments, consider the body of revolution shown i n  
f igure 7 consisting of a hemispherical nose f a i r e d  in to  a cyl indrical  
midsection followed by a f l a r e d  a f t  region composed of two conical 
frustums. The equations defining body shape and slope a r e  given i n  
the f igu re  along with values chosen f o r  aerodynamic parameters 

of a t tack  a = 20°, posi t ive pitching - = 0.013 about center of 

gravi ty  3 = - . 
chosen as 9 u n i t s  and the corresponding lengths of other quant i t ies  are 
indicated. 

( 9 

v, 
For purposes of convenience, the body length i s  

2 9  ") 
Suff ic ien t  axial s t a t ions  are chosen (21, indicated by the  dots 

along the  body axis of symmetry) and a value of computed from 
equation ( 4 )  f o r  each value of x. For each G(x) value so obtained, 
there  are read off from f igures  1 and 2, respectively, values of the 

I b ( x ) i  parmeters .  (For values of G(x) + 03, simple 
computations a re  made d i r e c t l y  from the formulas included i n  the f igu res . )  
Then i n  accordance with equations (21), (22), and (23) the functions 

G(x) 

and J [G(x j  

are tabulated and p lo t ted  against  the a x i a l  coordinate x as shown i n  
figure 8. 
meter, e t c . )  t o  obtain the areas under the so l id- l ine  curves of 

Integration by any suitable means (Simpson's Rule, plani-  
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figure 8 and multiplication by the appropriate factors of equations (21), \ 
(22), and (23) yield the following results for the basic forces and 
moments : 

To calculate the correction due to forebody shielding, that is, 
aCx, EN, and 6, values of the parameter k defined by equa- 
tion (25) are obtained from figure 3 for those axial stations behind 
the cylindrical section. The parameters AI[G(x)] and aJ[G(x)] are 
then estimated from figures (4) and ( 5 ) ,  respectively, and the calcula- 
tion of the incremental forces and moment defined by equations (29), 
(3O), and (31) proceeds in a manner directly analogous to the procedure 
described above for the basic contributions. The incremental effects 
are shown as dashed lines in figure 8 and result in the following 
corrections: 1 

acX = -0.03 

acN = 0.03 

AC, = -0.02J 

Inasmuch as the body chosen for illustrative calculations does not 
have a flat surface at the nose, the flat-face contributions (eqs. (37) 
and (38)) are, of course, zero. Thus in accordance with equations (28) 
and (39), the total coefficients are: 
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It should be noted that the Newtonian theory does not account for 
either variations in Mach number or for differences in the value of y ,  
the ratio of specific heats. The theory is strictly valid at Mach 
numbers approaching infinity and for 7 = 1. Simple modifications to 
the Newtonian theory have been suggested to account for these variations. 
As an example for blunt bodies, the Newtonian coefficient might be multi- 

r 1 
2 . For pointed 

2(Y i- + 1) l1 - ( y  + 3)M2 
plied by the ratio (see ref. 5), 

L J 
bodies with attached shocks, the Newtonian values appear to be more 
satisfactory. 
tions may be found in reference 6. 

Some discussion pertinent to Newtonian theory modifica- 

CONCLUDING RENARKS 

Equations based on Newtonian impact theory have been derived and 
a computational procedure developed which enables the determination of 
the aerodynamic forces and moments acting on arbitrary bodies of revolu- 
tion undergoing either separate or combined angle-of-attack and pitching 
motions. The analysis considers variations in angle of attack from -90° 
to 90° and allows for both positive and negative pitching velocities of 
arbitrary magnitude. The results are also directly applicable to bodies 
in either separate or combined sideslip and yawing maneuvers. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., October 28, 1960. 



22 

APPENDIX 

CALCULATION OF STABILITY DERIVATIVES 

Although the Newtonian theory predicts  forces and moments t h a t  
a re  nonlinear w i t h  respect t o  var ia t ions i n  angle of a t tack and/or 
pitching velocity,  considerable a t ten t ion  has been given the problem 
of calculating s t a b i l i t y  derivatives,  t h a t  is ,  r a t e s  of change of forces 
and moments expressed i n  nondimensional form ( fo r  example, re fs .  3 
and 7) .  Inasmuch as  the derivatives are conventionally evaluated as 
a --.) 0 and q + 0, it i s  apparent t h a t  considerable caution must be 
exercised i n  the application of r e su l t s  so obtained without regard t o  
nonlinear e f fec ts .  5 

L 
1 
2 
2 

The equations f o r  the  basic  forces and moments derived i n  the pres- 
ent  paper may be readi ly  expressed i n  the  form of s t a b i l i t y  der ivat ives  
by appropriate d i f fe ren t ia t ion  of equations (7),  ( 8 ) ,  and ( 9 )  with the 
limits q(x) and q(x) therein replaced by -n/2 and n/2, respec- 
t ively,  and u t i l i z a t i o n  of the  evaluations f o r  12[G(xq and J2b(x)] 
as given by equation (16). The following formulas resu l t :  

1 
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a -10 

At the limit a = 0 and/or q = 0, the normal-force coefficient CN 
and the pitching-moment coefficient C, 
force coefficient (+ is finite. A formula for Cx may be derived 
through use of equations ( 8 )  and (16) and is given by 

are both zero, but the axial- 

Equations ( A l )  to ( A 7 )  are valid for arbitrary bodies of revolu- 
tion and may be readily evaluated by analytical, numerical, or graph- 
ical procedures. 

In the event the body under consideration has a flat face at the 
nose, there are some additional contributions to be considered; these 
may be obtained by straightforward differentiations of equations ( 3 7 )  
and are as follows: 

c 
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a+ 0 

(%Jf=(T) acm, f = O  

a 4  0 

= o  

4 0  
U + O  

where Ro is the radius at the nose. 

At the limit a = 0 and/or q = 0, the normal-force coefficient 
and the pitching-moment coefficient Cm,f are both zero, but the cN, f 

axial-force coefficient is finite and is obtained from equation (37) as 
c 



q=o 

Additional increments due to forebody shielding have not been con- 
sidered; these effects are felt to be relatively insignificant for 
values of a and q at or in the Wediate vicinity of zero. The 
effects of centrifugal forces in the flow have also been excluded in 
the analysis. 

In the event stability derivatives are desired for values of a 
and/or q 
and moment variations with a and q be obtained by the method of the 
present paper so as to emphasize any nonlinear characteristics. 
required slopes may then be estimated by the usual procedures. 

significantly different from zero, it is suggested that force 

The 
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Figures 1 and 2 a re  contained i n  a pocket attached t o  the back 
cover of this report .  

50 

40 

In cu cu 

30 
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10 

0 02 04 .6 .8 1.0 

Rb 
Ro 

Figure 3.- Variation of the parameter k with the r a t i o  Rb/R(x) 
where k, the maximum percent shielding due t o  forebody, i s  
defined by equation (25). 
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Figure 4.- Chart for evaluation of the function AI G(x) . [ I  
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Figure 5.- Chart for evaluation of the function N [ G ( x ) ]  . 
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Figure 8.- Axial var ia t ions of several  functions obtained f o r  body of 
revolution shown i n  f igure 7. 


